Particular Vibration Spectrum of Antimony Trichloride Caused by Bond Fluctuation

Hans Friedewold and Wolfgang Brockner

Institute of Inorganic and Analytical Chemistry, Technical University of Clausthal, Clausthal-Zellerfeld, FRG

Z. Naturforsch. 46a, 595-598 (1991); received April 27, 1991

Vibration spectra of solid and molten antimony trichloride were recorded. In the solid state, vibration frequencies in addition to those of the SbCl₃ molecules with their $C_{3\nu}$ symmetry indicate bond fluctuations according to $2\,\text{SbCl}_3 \rightleftharpoons \text{Sb}^+ + \text{SbCl}_6^-$.

Key words: SbCl₃, Vibration spectrum, Bond fluctuation, Electron transfer.

Introduction

In the past, antimony trichloride has extensively been investigated by structure sensitive methods, especially by vibration spectroscopy [1-8]. SbCl₃ crystallizes in the space group Pnma (D_{2h}^{16}) , and it is isotopic with several trihalides of Group V elements like NCl₃, PCl₃, PBr₃, AsCl₃, β -SbBr₃ and BiCl₃.

In the solid state, the vibration spectra of these compounds differ considerable from their melt and gas spectra. The last ones can be explained by the C_{3v} symmetry of the AB_3 molecule.

The more complex vibration spectra of the solids are mostly caused by intermolecular interactions. Especially the Raman spectra of the phosphorus and arsenic trihalides exhibit many additional bands [9–10] while SbCl₃, SbBr₃, BiCl₃ and BiBr₃ show a simpler splitting pattern [3–8, 11]. For PBr₃ below 200 K ten Raman active deformation and stretching frequencies were observed while for SbCl₃ below 340 K there are only seven Raman bands.

Obviously different interactions exist in these solids despite the same crystal structure. This has not been sufficiently considered in the cited investigations, so that a new discussion of the SbCl₃ vibration spectrum is justified.

Reprint requests to Prof. Dr. W. Brockner, Institut für Anorganische und Analytische Chemie, Technische Universität Clausthal, Paul-Ernst-Straße 4, W-3392 Clausthal-Zellerfeld, FRG.

Results

The FIR spectra as well as the Raman spectrum of crystalline SbCl₃ along with the Raman spectrum of a solidified melt sample of SbCl₃ with 15.0 mol% RbCl are presented in Figure 1. Table 1 summarizes the observed frequencies (cm⁻¹) of solid SbCl₃ and the SbCl₃–RbCl mixture along with their intensities and literature data [3, 15]. Especially the low temperature FIR spectrum of SbCl₃ at 8 K demonstrates that it is much more complex than formerly assumed.

Description of the Structure

Based on data of Lindquist and Niggli [1] a section of the crystal structure of SbCl₃ is sketched in Figure 2. The unit cell with space group Pnma consists of four molecular units. In Table 2 the numbers and distances of the Sb-Cl coordiations are given. Therefore Lipka [2] proposed a 3-dimensional structure built up by bicapped-trigonal prisms, so that a coordination number 8 for antimony results (Figure 2).

In general, it is difficult to make predictions for real chemical bonds only on the basis of X-ray structure data. So the Sb-Cl coordinations with distances in the range of 345-400 pm cannot be considered as distinct chemical bonds.

Experimental

Spectroscopically pure SbCl₃ was prepared by the reaction of antinomy pentachloride and antimony according to

$$3 \operatorname{SbCl}_5 + 2 \operatorname{Sb} = 5 \operatorname{SbCl}_3. \tag{1}$$

0932-0784 / 91 / 0700-0595 \$ 01.30/0. - Please order a reprint rather than making your own copy.

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution-NoDerivs 3.0 Germany License.

Zum 01.01.2015 ist eine Anpassung der Lizenzbedingungen (Entfall der Creative Commons Lizenzbedingung "Keine Bearbeitung") beabsichtigt, um eine Nachnutzung auch im Rahmen zukünftiger wissenschaftlicher Nutzungsformen zu ermöglichen.

On 01.01.2015 it is planned to change the License Conditions (the removal of the Creative Commons License condition "no derivative works"). This is to allow reuse in the area of future scientific usage.

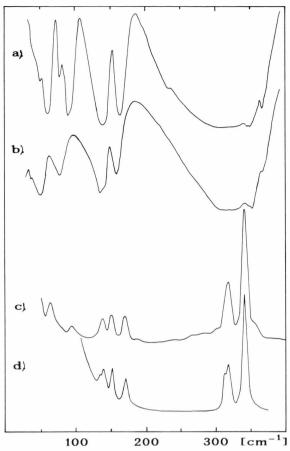


Fig. 1. Vibration spectra of antimony trichloride. a) Low temperature FIR spectrum (8 K). b) Room temperature FIR spectrum. c) Raman spectrum of a solidified melt sample of SbCl₃ with 15 mol% RbCl (room temperature). d) Room temperature Raman spectrum.

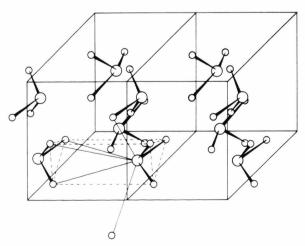


Fig. 2. Crystal structure of SbCl₃ (Pnma) based on data of [2] with four SbCl₃ molecules in the unit cell.

Table 1. Vibrational frequencies (cm⁻¹) of antimony trichloride with their intensities and literature data [3, 15] for comparison.

RE (RT)	RE (RT) +0.15 RbCl	RE [3]	FIR (RT)	FIR [15] FIR (8 K)
			35 m 45 msh 47 vwsh		50 w
			50 s		∫ 57 s
			67 vwsh		61 s 76 m
			78 s		89 vs 93 ssh
		94 m	113 vwsh		()3 3311
35 msh		133 m	135 s	128.1	137 vs
39 m	139 m	138 m		120.1	
51 m	151 m	150 m	141 s		142 vs
	1.00	4.60	159 s	164.0	∫ 160 s 163 s
70 m	169 m	169 m	192 vwsh		189 wsh 228 m
			308 s		{ 296 s 304 s
13 s 18 s	318 s	312 s 318 s			
			324 s 330 s		333 s
342 vs	341 vs	340 vs	348 vs 354 vs 363 wsh	356.1	346 vs 352 vs 363 wsh 369 m
				356	

s = strong, m = medium, w = weak, v = very, sh = shoulder.

N	SbCl distances		
1	234		
2	237		
2	346		
1	361		
2	374		

Table 2. Number (N) of Sb-Cl coordinations and corresponding Sb-Cl distances (pm) below 400 pm (the sum of the van der Waals radii) for crystalline SbCl₃ [2].

For further purification this product was destilled four times over antimony and zinc, respectively. All manipulations and operations were carried out in a dry argon atmosphere under extreme exclusion of air and humidity. In accordance with the literature value [12], the SbCl₃ produced had a melting point of 346.35 K.

The Raman spectra were recorded with a Coderg PH1 spectrometer and laser beam excitation (Krypton Ion Laser, Spectra Physics 165/01; 647.1 nm). The Raman scattering was observed perpendicular to the incident laser beam. The spectrometer and modified

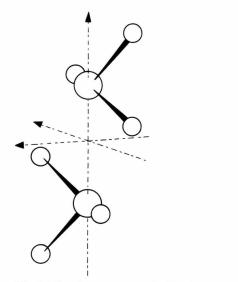


Fig. 3. Vibration spectroscopically relevant unit cell with two SbCl₃ units and the factor group C_{2h} .

sample compartment have already been described [13, 14]. The room temperature far infrared (FIR) spectrum was recorded with a modified Beckman interferometer FS 720 interfaced to a Kontron KAP 1000 computer for acquiring and manipulating the data, and the low temperature FIR spectrum with a Bruker IFS 113 FT spectrometer.

Discussion

So far the interpretation of the $SbCl_3$ vibration spectrum is based on factor group analyses with four $SbCl_3$ molecules integrated in the unit cell [4]. The four fundamentals of the $SbCl_3$ molecules $(2A_1 + 2E)$ then split into 24 vibrations according to

$$\begin{split} & \Gamma_{vib}(D_{2h}) = 4 \, A_g(RE) + 2 \, B_{1g}(RE) + 4 \, B_{2g}(RE) \\ & + 2 \, B_{3g}(RE) + 2 \, A_u + 4 \, B_{1u}(IR) \\ & + 2 \, B_{2u}(IR) + 4 \, B_{3u}(IR) \, . \end{split} \tag{2}$$

Species in A_u are inactive and the mutual exclusion rule is valid. Instead of the twelve Raman active deformations and stretchings expected only seven could be observed.

With an equalization of the crystallographic with the spectroscopic unit cell, 3-dimensional interactions are assumed which at least are so high that they deliver a contribution to the vibrational behavior. If one of these contributions exceeds the others significantly,

Table 3. Splitting schematic for crystalline SbCl₃ and proposed assignment of the vibration frequencies (cm⁻¹).

			1	/-
Point group C _{3v}	Site group C _s	Factor group $D_{2h}^{1)}$	Factor group C _{2h} ²⁾	ν/cm ⁻¹
ν ₁ (A ₁)	— A' (A _g — B _{2g} — B _{1u} — B _{3u}	A _s	342 354
ν ₂ (E)	A' =	A _g — B _{2g} — B _{1u} — B _{3u} —	A _g	318 363
	A" =	$ \begin{array}{c c} B_{1g} \\ B_{3g} \\ A_{u} \\ B_{2u} \end{array} $	B _g	313 348
ν ₃ (A ₁)——	— A' ($ \begin{array}{c c} A_8 \\ B_{2g} \\ B_{1u} \\ B_{3u} \end{array} $	A _g	151 159
ν ₄ (E)	_ A' =	A _g — B _{2g} — B _{1u} — B _{3u} —	A _g	139 135
	A" =	$ \begin{array}{c c} B_{1g} \\ B_{3g} \\ A_{u} \\ B_{2u} \end{array} $	B _g	135 141

then vibrations move close together and cannot be separated any more, and a distinct assignment of the vibration modes is impossible.

In this case it is suitable and allowed to reduce the basic unit of a factor group analysis, that is to halve the crystallographic unit cell. As a result, the factor group C_{2h} (Figure 3) is obtained. Thus, the $SbCl_3$ structure may be imagined as a linear chain of AB_3 molecules, and according to Table 2 only the intermolecular Sb-Cl distances to 346 pm are considered as interactions; therefore the coordination number of antimony is five.

A vibrational analysis with two SbCl₃ molecules in the unit cell leads to the following result:

$$\Gamma_{\text{vib}}(C_{2h}) = 4 A_g(RE) + 2 B_g(RE) + 2 A_u(IR) + 4 B_u(IR).$$

As expected, the number of the vibrations is halved, and the Raman spectrum should show three deformation as well as three stretching frequencies.

In Table 3 the splitting schematic for the different models used and the assignment of the frequencies for the reduced spectroscopic unit cell are summarized and compared. These results demonstrate that the number of species in the deformation and stretching region must always have the same value independently of the ansatz chosen. This is contrary to the experimental Raman spectrum (Fig. 1d) where four deformation and three stretching vibrations are observed. Therefore the Raman band at 170 cm⁻¹ in the SbCl₃ Raman spectrum is not caused by the SbCl₃ molecules and/or its intermolecular interactions in the

Obviously, small additions of alkali chloride disturb considerably the SbCl₃ structure (cf. Fig. 1c; SbCl₃+15 mol% RbCl). Here the Raman bands at 318 and 139 cm⁻¹ are no more split. Nevertheless, the Raman vibration at 170 cm⁻¹ remains with unchanged intensity.

In the SbCl₃ crystal structure rapid electron transfer or bond fluctuations are imaginable, which will cause structural defects, and could be a possible reason for the existence of the Raman band at 170 cm⁻¹. It is striking that the complex anion SbCl₆ shows a strong Raman deformation at 170 cm⁻¹ ($v_5(F_{2g})$, too, which has been observed in several compounds of the type $Me^{I}Sb^{V}Cl_{6}$ ($Me^{I}=K^{+}$, Rb^{+} , Cs^{+} , NO^{+}) [16–20] as well as in the mixed-valent type Me₄Sb^{III}Cl₆Sb^VCl₆ [21-24]. Possibly SbCl₂ may originate by a rapid electron or bond fluctuation in the SbCl3 crystal structure according to a more formal equilibrium reaction

$$2 \operatorname{SbCl}_{3} \rightleftharpoons \operatorname{Sb}^{+} + \operatorname{SbCl}_{6}^{-}. \tag{4}$$

The $v_1(A_o)$ Raman stretching frequency of the SbCl₆ anion at 340 cm⁻¹ could be covered by an SbCl₃ fundamental. Normally the $v_2(E_g)$ Raman band of the octahedral SbCl₆⁻ at 284 cm⁻¹ is very weak, so that the lack of such a band in the SbCl₃ spectrum could be explained.

As a further hint for the existence of SbCl₆ in solid SbCl₃ the low temperature FIR spectrum (Fig. 1a) may be considered: The absorption bands at 333 and 189 cm⁻¹ correspond to SbCl₆ stretching and deformation frequencies $(v_3, v_4(F_{1u}))$.

The great instability of Sb(I) compounds [25], whose existence in the condensed state was not proved distinctly until now, should cause a short life time. Possibly this could explain that an expected isomery shift for solid SbCl₃ is not found in Mößbauer spectra (Sb(I), Sb(III), Sb(V)) [26].

Acknowledgements

Thanks are expressed to D. Grünewald for recording Raman spectra and to Dr. M. Somer for the measurement of the low temperature FIR spectrum. Furthermore we gratefully acknowledge financial support from Deutsche Forschungsgemeinschaft (DFG).

- [1] I. Lindquist and A. Niggli, J. Inorg. Nucl. Chem. 2, 345 (1956).
- A. Lipka, Acta Cryst. B 35, 3020 (1979).
- [3] K. W. Fung, G. M. Begun, and G. Mamantov, Inorg. Chem. 12, 53 (1973).
- [4] E. Chemouni, J. Inorg. Nucl. Chem. 33, 2317 (1971).
- [5] A. T. Kozulin, Opt. Spektrosk. 32, 374 (1972).
- [6] A. T. Kozulin, A. V. Gogolev, and N. I. Noskov, Opt. Spektrosk. **40**, 518 (1976).
- [7] M. Fontana, G. Maisano, P. Migliardo, C. Vasi, and F. Wanderlingh, Optica Acta 27, 1087 (1980).
- [8] F. Aliotto, G. Maisano, N. Micali, P. Migliardo, C. Vasi, and F. Wanderlingh, J. Chem. Phys. 76, 3987 (1982).
- A. T. Kozulin, A. V. Gogolev, V. I. Karmanov, and V. A. Murtsovkin, Opt. Spektrosk. **34**, 708 (1973). [10] D. J. Stufkens, Rec. Trav. Chim. **89**, 755 (1970).
- [11] R. P. Oertel and R. A. Plane, Inorg. Chem. 8, 1188 (1969).
- [12] G. J. Janz and R. P. T. Tomkins, Nonaqueous Electrolytes Handbook, Vol. II, Academic Press, New York/ London 1973.
- [13] W. Bues, W. Brockner, and D. Grünewald, Spectrochim. Acta 28 A, 1519 (1972).
- [14] H. A. Øye and W. Bues, Inorg. Nucl. Chem. Letters 8, 31 (1972).

- [15] P. W. Davis and R. A. Oetjen, J. Mol. Spectrosc. 2, 253 (1958).
- [16] H. C. Gaebell, G. Meyer, and R. Hoppe, Z. anorg. allg. Chem. 493, 65 (1982).
- [17] D. J. Stufkens and H. Gerding, Rec. Trav. Chim. 89, 1267 (1970).
- [18] F. J. Brinkmann, Inorg. Nucl. Chem. Letters 6, 453 and 599 (1970).
- [19] I. R. Beattie, T. Gilson, K. Livingston, V. Fawcett, and G. A. Ozin, J. Chem. Soc. (A) 1967, 712.
- [20] J. Weidlein, U. Müller, and K. Dehnicke, Schwingungs-
- spektroskopie, Thieme-Verlag, Stuttgart 1982. [21] T. Barrowcliffe, I. R. Beattie, P. Day, and K. Livingston,
- J. Chem. Soc. (A) 1967, 1810. [22] K. Prassides and P. Day, J. Amer. Chem. Soc. 105, 3366
- [23] K. Prassides and P. Day, J. Chem. Soc., Faraday Trans. 2 **81,** 1259 (1985).
- [24] R. J. H. Clark and W. R. Trumble, J. Chem. Soc. (A) 1976,
- [25] W. J. Balfour and R. S. Ram, J. Mol. Spectrosc. 130, 389
- [26] L. H. Bowen, J. G. Stevens, and G. G. Long, J. Chem. Phys. 51, 2010 (1969).